\qquad

C.U.SHAH UNIVERSITY

Summer-2015

Subject Code4SC04MTC1
Course Name: B.Sc.
Semester: IV

Subject Name: : Differential and Integral Calculus
Date: 19/5/2015
Marks: 70
Time: 10:30 TO 01:30

Instructions:

1) Attempt all Questions in same answer book/Supplementary.
2) Use of Programmable calculator \& any other electronic instrument prohibited.
3) Instructions written on main answer book are strictly to be obeyed.
4) Draw neat diagrams \& figures (if necessary) at right places.
5) Assume suitable \& perfect data if needed.

SECTION-I

Q-1 a) If $\emptyset(x, y, z)=x^{3} y+x y^{3}+x y z$ find $\nabla \emptyset$.
b) Check whether the vector field $\vec{F}=\left(x^{2}+x y^{2}\right) i+\left(y^{2}+x^{2} y\right) j$ is irrotational.
c) Evaluate $\int_{0}^{2} \int_{0}^{1}\left(x^{2}+2 y\right) d x d y$
d) What does $\iint_{R} d x d y$ geometrically represent?

Q-2 a) For a function \bar{f} whose second order derivative exists then prove that curl \bar{f} is solenoidal.
b) If $u=x+y+z, v=x^{2}+y^{2}+z^{2}, w=y z+x z+x y$ then prove that $\operatorname{grad} u, \operatorname{grad} v$ and $\operatorname{grad} w$ are coplanar.
c) If $\bar{f}=\operatorname{grad}\left(x^{3}+y^{3}+z^{3}-3 x y z\right)$ then find $\operatorname{grad}($ div $\bar{f})$.

OR
Q-2 a) For a solenoidal vector field \vec{H} show that curl curl curl curl $\vec{H}=\nabla^{4} \vec{H}$.
b) Evaluate $\int_{0}^{a} \int_{y}^{a} \frac{x}{x^{2}+y^{2}} d x d y$ by changing the order of integration.
c) Find unit normal vector to the surface $\emptyset=x^{2} y+y^{2} z+z^{2}$ at the point ($1,1,1$).

Q-3 a) Evaluate $\iint_{R} y d x d y$ where R is the region bounded by the parabolas $y^{2}=4 x$ and $x^{2}=4 y$.
b) Find the value of $\iint_{R}\left(1-x^{2}-y^{2}\right) d x d y$ where R is circle $x^{2}+y^{2} \leq 1$.
c) Evaluate: $\int_{\frac{\pi}{2}}^{\frac{\pi}{2}} \int_{0}^{2 \cos \theta} r^{2} d r d \theta$.

OR
Q-3 a) Using multiple integral, prove that volume of sphere having radius a is $\frac{4}{3} \pi a^{3}$.

b) Applying the transformation $u=\frac{2 x-y}{2}, v=\frac{y}{2}$ and evaluate

$$
\begin{equation*}
\int_{0}^{4} \int_{\frac{y}{2}}^{\frac{y}{2}+1} \frac{2 x-y}{2} d x d y . \tag{05}
\end{equation*}
$$

c) Evaluate: $\int_{0}^{1} d x \int_{0}^{2} d y \int_{1}^{2} x^{2} y z d z$

Section - II

Q-4 a) Verify $u=e^{x} \cos y$ is a solution of partial differential equation $\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0$.
b) Find tangents at origin and give the nature of double point $(0,0)$.
c) Form a partial differential equation from the equation $2 z=\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}$.
d) State Stoke's theorem.

Q-5 a) Verify Green's theorem for $\int_{c}(x+y) d x+2 x y d y$, where c is the rectangle in $X Y$ - plane bounded by $x=0, y=0, x=a$ and $y=b$.
b) Evaluate $\iint_{s} \vec{F} \cdot \hat{n} d s$, where $\vec{F}=y i+z j$ and s is a part of $2 x+2 y+z=2$.
c) Evaluate $\int_{(2,1)}^{(1,2)} y d x$ over the line segment joining the points $(2,1)$ to $(1,2)$.

OR
Q-5 a) Using Green's theorem evaluate $\int_{c}\left(x+y^{2}\right) d x+\left(x^{2}-y\right) d y$, where c is curve between $y^{2}=x$ and $y=x$.
b) If $\vec{F}=3 x y i-y^{2} j$, evaluate $\int_{c} \vec{F} \cdot d \vec{r}$, where c is the curve in $X Y-$ plane $y=2 x^{2}$ from $(0,0)$ to $(1,2)$.
c) Verify stoke's theorem for $\bar{F}=\left(x^{2}-y^{2}\right) i+2 x y j$ in the rectangular region $x=0, y=0, x=a, y=b$.

Q-6 a) If ρ be the radius of curvature for the polar curve $r=f(\theta)$ then prove that
$\rho=\frac{\left(r^{2}+r_{1}^{2}\right)^{\frac{3}{2}}}{r^{2}-r r_{2}+2 r_{1}^{2}}$.
b) Find multiple points on the curve
$x^{3}+y^{3}-3 x^{2}-3 x y+3 x+3 y-1=0$. Also determine it's type.
c) Solve: $x p+y q=3 z$.
OR

Q-6 \quad a) Prove that radius of curvature for the curve $y=f(x)$ is $\frac{\left(1+y_{1}^{2}\right)^{\frac{x}{2}}}{y_{2}}$.
b) Find multiple points on the curve $(y-6)=x^{2}(x-2)^{3}-9$. Also determine it's type.
c) Solve: $\frac{y^{2} z}{x} p+x z q=y^{2}$

